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Flapping- wing micro air vehicles (MAVs) are small

size flying vehicles, that are designed for inspection

of confined spaces such as buildings, tunnels, shafts

and so on. Another kind of missions the MAVs can

undertake are the outdoors, urban reconnaissance

in dangerous environments such as contaminated

areas, because the fixed wing vehicles are too fast

to fly among the buildings. These purposes require

some peculiarities of which one can mention their

capability of low speed flying and hovering, high

manoeuvrability and stability.

“DelFly’’, Delft University of Technology



Agenda

3

Objectives (main)

» Theoretical approach (Aerodynamics 
and Mechanics of flapping flight)

» Experimental approach

» Wing and mechanism design
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Main Objective

To provide a method of calculation of the

aerodynamic forces and moments on a MAV

performing a straight avian-type flight

Example:

’Micro-bat’’, 

University of 

California 
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Theoretical Approach

Aerodynamics of flapping wings
 Engineering models
(similar to “blade element” theory)
 Aerodynamic modeling
o Potential modeling
o CFD (Navier-Stokes equations)

Mechanics of the flapping mechanism
Mechanics of flight

Experimental Approach
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Design Model: 

Simplified insect thorax
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Experimental approach

Characteristic size and mass of the MAV 

b≈8 cm, m<30 g

Flapping frequency

f>10 Hz

Experimental mechanism
Contract 113 “FLAWIAS”/2007

INCAS+UPB+INFOSIT
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Mechanism design

Designer: eng. Mihai DUMBRAVA



Mechanism design- detail
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The Mechanism
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The Flapper Mechanism
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Theoretical Approach

Flapping Wing Aerodynamics
(using potential flow approximation)
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CALCULATION OF THE AERODYNAMIC FORCES ON AN 
MICRO AIR VEHICLE IN FORWARD FLAPPING FLIGHT
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 Steady flow normalwash

Oscillatory flow normalwash

Negative frequency. Conjugate of the integral 
equation
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Methods of Solving the integral equations
• DLM
• Akamatsu-Dat
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Consequences

• Harmonic oscillation
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• General periodic oscillation

  )(,),,( tqsoltsO 


where q(t) =q(t+T)
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• Case when q(t) can be expressed as a Fourier integral

Wing displacement   )(,),,( tqsoltsO 
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Numerical Example

Consider a rectangular wing (c=1m, b=3m).
The wind speed is  (M = 0.147). 

Consider a pitching motion:
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Symmetric Flapping and Pitching
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The two flapping wings at rest; at xac=0.25c are 

the pitching hinges
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The time functions for flapping (bf(t)=cost) and pitching modes (bp(t)); the 
pitching mode is approximated by a Fourier series with 7 terms

DLM code used:
NC = 10 boxes in chord and NS=15 

boxes in span and
kp = 0.157; 0.471; 0.785; 1.1.
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CONCLUSIONS

1. This is the first step towards the study of the
aerodynamics of the flapping wings. There are
several parts of the problem to be clarified. For
example, we mention the suction force and wing
induced drag, inviscid induced power and viscous
power.
2. The forces and moments that are calculated
with the present method can be expressed in
closed forms. This is a great advantage over the
pure numerical methods.
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THANK YOU!


